November 2008

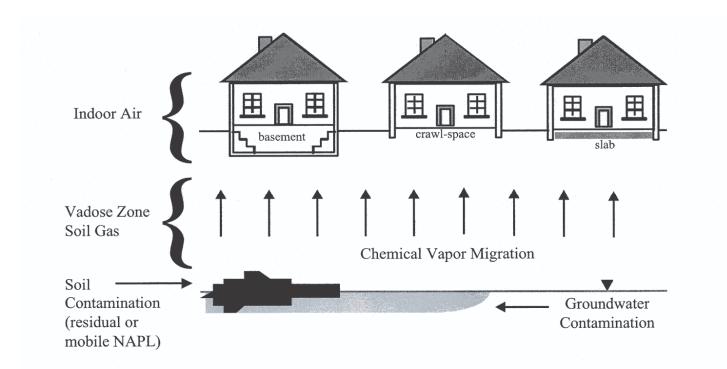
Dr. Blayne Hartman Independent Consultant H&P Mobile Geochemistry Bhartman@handpmg.com November 2008

Assessing Vapor Intrusion Risk at Tank Sites

For MO-DNR & MO PST Insurance Fund

Dr. Blayne Hartman Independent Consultant H&P Mobile Geochemistry Bhartman@handpmg.com

Training Overview

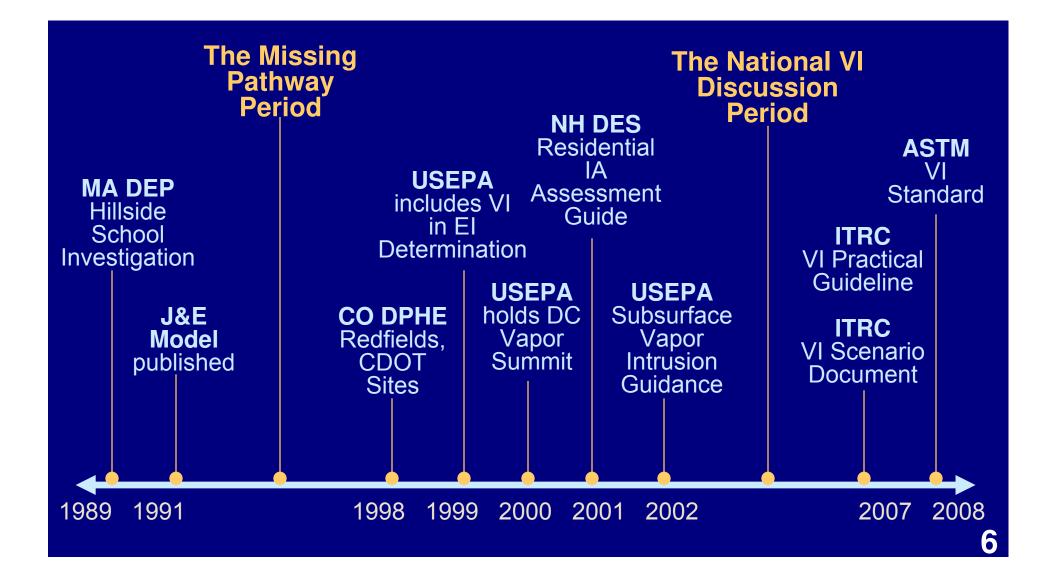

- Part 1 Overview of Vapor Intrusion
- Part 2 Review of Some Basic Principles
- Part 3 Review of VI Guidances
- Part 4 Methods to Assess Vapor Intrusion
- Part 5 Soil Gas Sampling & Strategies
- Part 6 Field Exercise

Part 1: Overview of Vapor Intrusion

4

- What Is It?
- Why Do You Care about It?
- When Should You Worry About It?
- What Sites to Worry?

What Is Vapor Intrusion?


Key Assumptions:

- Risk level (1 in 10,000? 100,000? 1,000,000?)
- Toxicity of Compounds
- Exposure Factors (time, rates, ventilation)

Why Do You Care About VI? (Risk Often More Perceived Than Real)

- Health & Safety of Occupants
- EPA Draft VI Guidance Exists
- Individual State Guidances
- ASTM New Phase 1 Standard
- Attorneys & Citizen Groups

Historical Perspective

ITRC Survey Results

- 39 of 43 states say vapor intrusion is a current concern being actively addressed
- VI concerns in every program (RCRA, FUDs CERCLA, brownfields, UST, dry-cleaning
- Most preferred methods for evaluating vapor intrusion: shallow soil gas/subslab sampling followed by indoor air measurements
- 9 states allow for biodegradation of petroleum hydrocarbons

When to Worry About VI?

- If VOC Contamination & Structures Exist:
 - Laterally within: EPA: 100' MO: 25' for HC
 - Vertically Within: EPA 100' MO: not specified
- Complaining Occupants
- Structures With Odors, Wet Basements
- Sites With Contamination & Future Use
- Attorneys & Communities

What Compounds?

- VOCs:
 - Hydrocarbons (benzene, aliphatics)
 - Methane
 - MTBE, other oxys
 - EDB & EDC
- Semi-VOCs:
 - Naphthalene

What Types of Sites?

- Petroleum Hydrocarbons
 - Service Stations, USTs, Pipelines
 - Oil Furnaces (naphthalene)

Low Target Levels Mean More Sites to Assess

- Typical Groundwater Levels:
 - benzene: 5 ug/L domestic use
- Benzene Levels Exceeding 1E-5 Risk:
 - Indoor Air: 0.003 ug/L

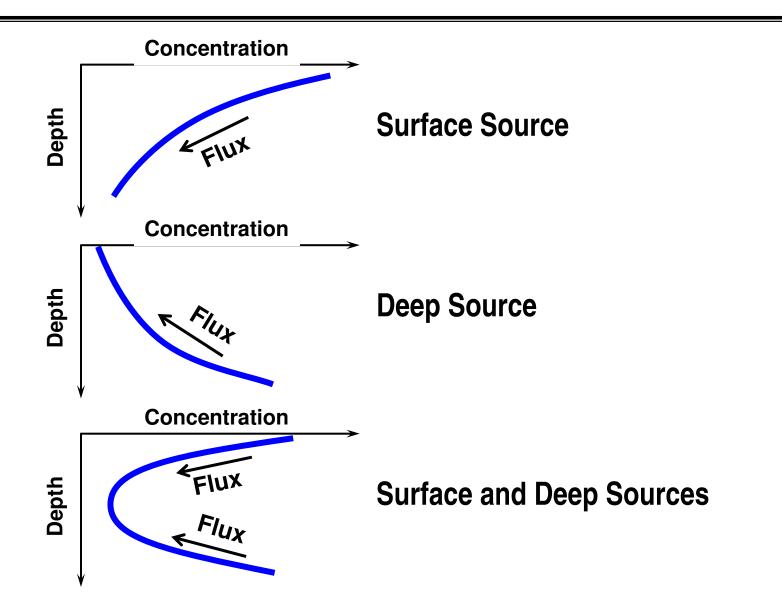
Part 2 – Some Basics

- Units
- Fick's Law
- Contaminant Partitioning
- Attenuation (alpha) Factors
- Conceptual Site Model (CSM/SCM)
- Risk Based Target Levels (RBTL)

The Most Common Goof

- 1 ug/L Benzene equals:
 - a) 1 ppbv
 - b) 1 ppmv
 - c) 330 ppbv
 - d) None of the Above

How do Contaminants Move?


Movement (Flux) = K d?/dx

where: K is a proportionality constant d?/dx is a gradient

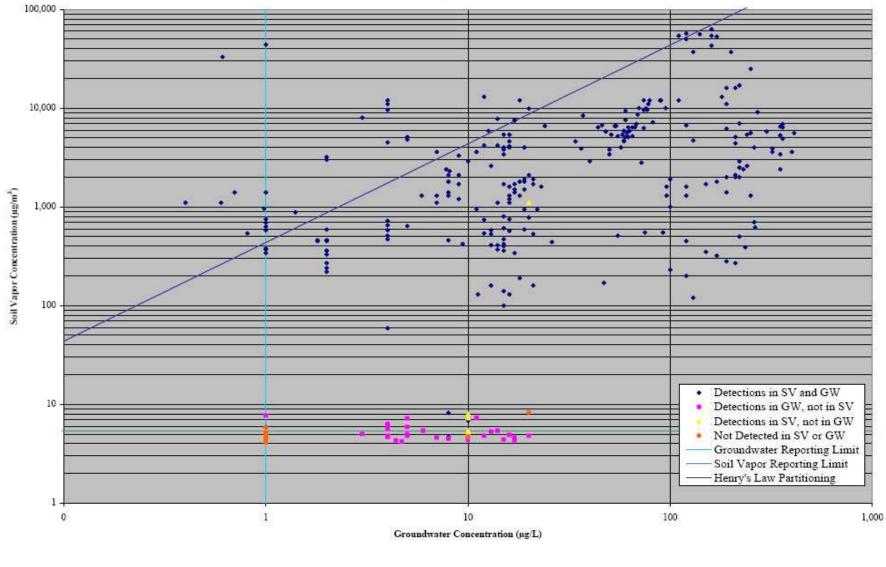
Property	Equation	Constant	
Momentum:	Flux = K dH/dx	hydraulic cond	
Heat (Poisson's):	$Flux = \Phi dT/dx$	thermal cond	
Mass (Fick's):	Flux = D dC/dx	diffusivity	

Momentum, Heat, Mass ALL Move from High to Low

Common Vapor Profiles

Contaminant Partitioning

Groundwater to Soil Gas (Henry's Constant):


$$H = Csg/Cw$$
, so, $Csg = Cw * H$

Example: $H_{benzene} = 0.25$ (dimensionless) For GW Conc = 10 ug/L Csg = 10 * 0.25 = 2.5 ug/L

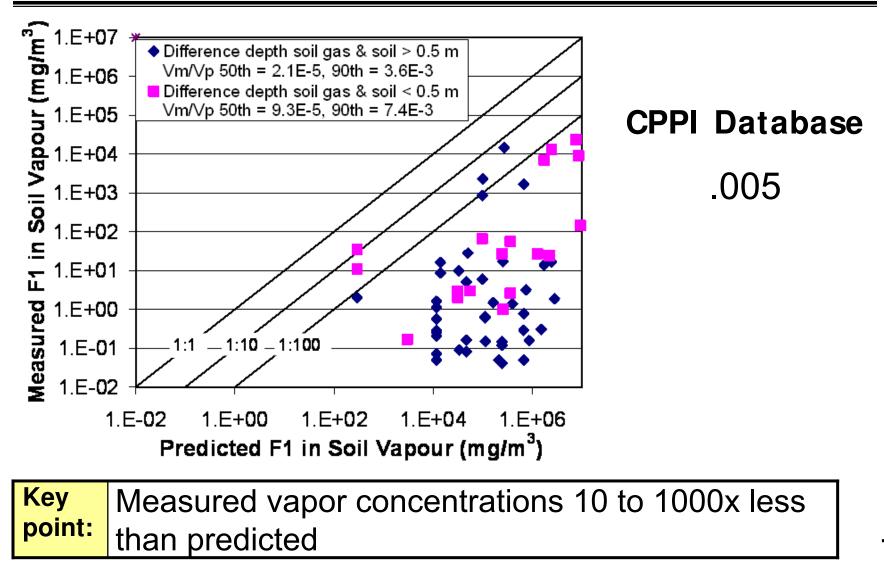
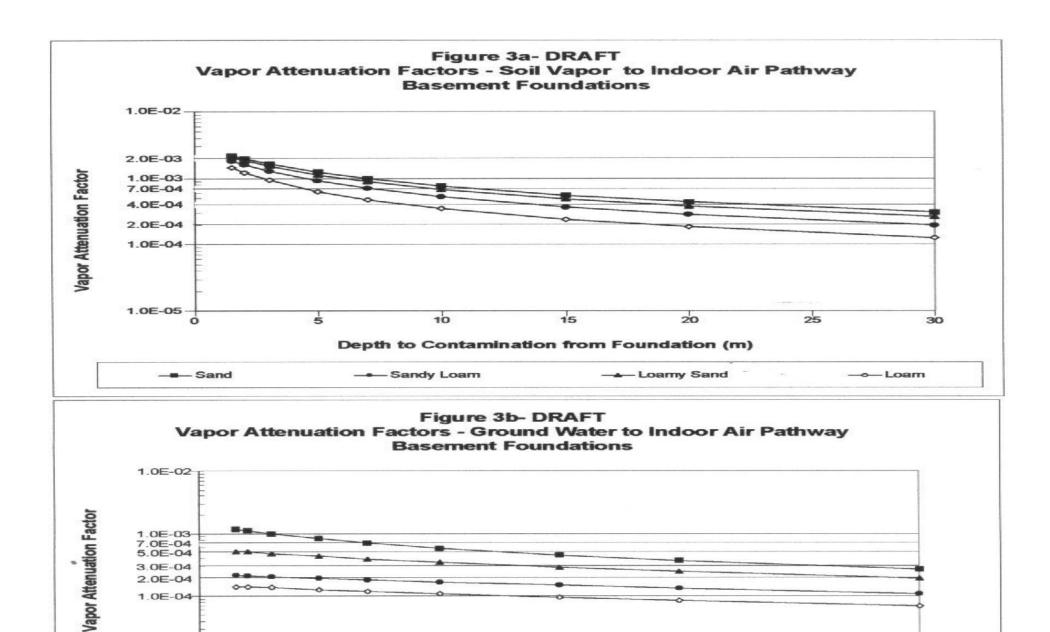

Assumes Equilibrium. Very Rarely Achieved (no mixers or blenders in the subsurface)

Figure 2 TCE in Water Table Depth Soil Vapor and Groundwater

Quarterly Report - Soil Vapor Monitoring Comprehensive Operations, Maintenance, & Monitoring Program Endicott, New York


Measured Soil Gas Data vs. Predicted from Soil Phase Data

Attenuation (alpha) Factors

$$\alpha_{sg} = C_{indoor}/C_{sg}$$
$$\alpha_{gw} = C_{indoor}/(C_{gw}*H)$$

- Lower alpha means higher attenuation
- Current VI guidances:
 - EPA α sg = 0.002 for 5', 0.1 for sub-slab
 - Hydrocarbon α sg likely <0.00001

15

Depth to Contamination from Foundation (m)

20

10

---- Sandy Loam

5

1.0E-05

ò

---- Sand

--->-- Loam

25

20

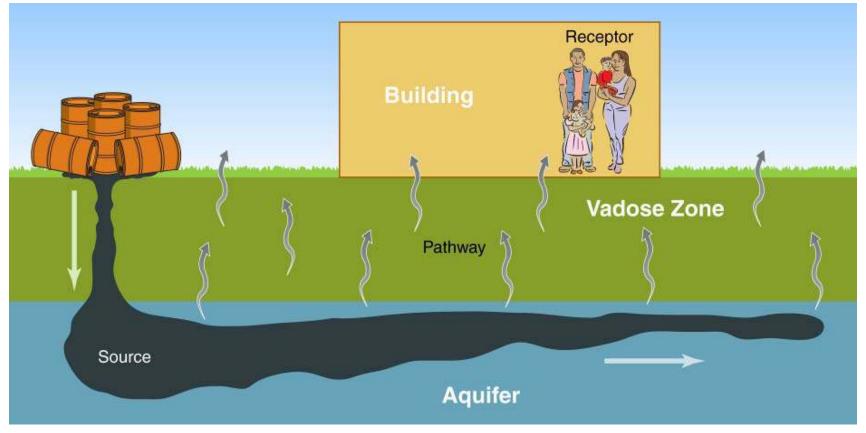
30

Using Alpha Factors to Calculate Screening Levels

For Soil Gas:

$$C_{sg} = C_{indoor} / \alpha_{sg}$$

For Groundwater:


$$C_{gw} = C_{indoor} / (H^* \alpha_{gw})$$

Example: C_{in} benzene = 3.1 ug/m3 C_{sg} (5') = 3.1/0.002 = 1500 ug/m3

Conceptual Site Model

DEFINITION:

A conceptual site model (CSM) is a simplified version of a complex real-world system that approximates its relationships

Components of a CSM

- Underground utilities & pipes
- Existing & potential future buildings
- Construction of buildings
- Type of HVAC system
- Soil stratigraphy
- Hydrogeology & depth to water table
- Receptors present (sensitive?)
- Nature of vapor source
- Vadose Zone characteristics
- Limits of source area & contaminants of concern
- Surface cover description in source and surrounding area

RISK 101: Screening Levels

- RBTL: Risk Based Target Level (MO)
- RBC (from ASTM): Risk Based Concentration
- RBSL: Risk Based Screening Level

Need to Know When & How to Use

RISK 101: Why Are Indoor Air RBTLs So Low?

- MO Benzene: 3.1 ug/m3 (1e-5 risk)
- Values Assume Exposure Times of:
 - 18 hr, 350 days/yr, 30 years

Ultra Conservative Assumptions Lower Allowed Levels and Bring in More Sites

Inhalation Exposure Parameters

20 m ³ /day for Res. <i>vs</i> CommInd. Exposure				
Parameter	Symbol	Res.	Comm- Ind.	Units
Exposure Duration	ED	30	25	years
Exposure Frequency	EF	350	250	days/year
Exposure Time	ET	24	8	hours/day

$$\left(\frac{\text{Residential}}{\text{Comm-Ind}}\right) = \left(\frac{30 \text{ years}}{25 \text{ years}}\right) x \left(\frac{350 \text{ days/ year}}{250 \text{ days/ year}}\right) x \left(\frac{24 \text{ hours/ day}}{8 \text{ hours/ day}}\right) = 5.1 \cong 5$$

Methods for Target Level Determination

- Soil & GW: MO Table 7.1 through 7.3
- Soil Gas: Tier 2 Target Levels
- From Spreadsheet/Model (RAM Group)
- Use Custom Software (Tier 3)

Other Models

- Johnson-Ettinger Most Common
 - GW, soil, soil gas spreadsheets
 - Screen & advanced versions
 - Hard to compare defaults vs actual values used
- Variables You Can Change (Tier 3)
 - GW or soil gas concentration
 - Soil type (diffusivity)
 - Ventilation rate
 - Exposure time
 - Building Size

Part 3 – Review of VI Guidance

- EPA OSWER VI Guidance
- ITRC Guidance
- ASTM VI Standard

OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)

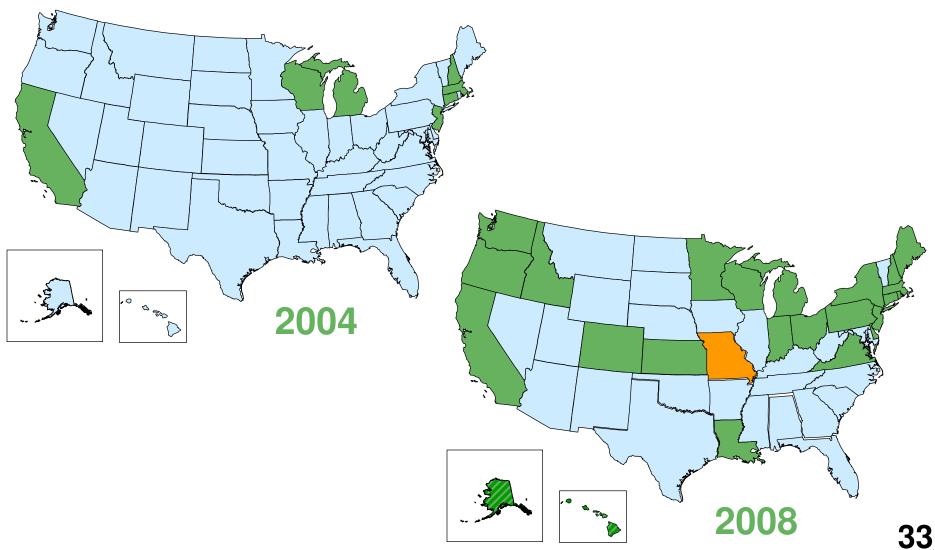
Federal Register Notice - November 29, 2002

- Fact Sheet: Evaluating the Vapor Intrusion into Indoor Air
 - Adobe PDF File [17 KB]

Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)

(Complete Document): Adobe PDF File [3019 KB]

- Draft Guidance
 - Adobe PDF File [516 KB]
- Tables
 - Adobe PDF File [353 KB]
- Appendices A-C
 - Adobe PDF File [972 KB]
- Appendices D-F
 - Adobe PDF File [722 KB]
- Appendices G-I
 - Adobe PDF File [475 KB]

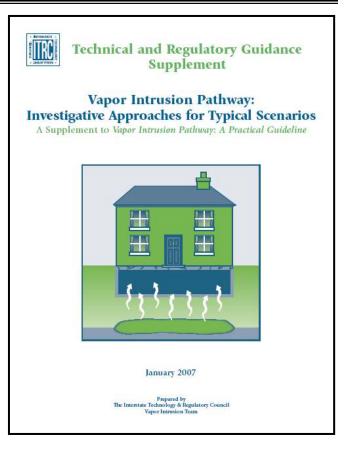

<u>E-Docket</u> is an on-line system that allows viewers to search the Agency's major public dockets on-line, view the index listing of the contents for the dockets included in the system, and access those materials that are available on-line. You may also submit comments on-line while this docket is open for public comment.

EPA-OSWER Draft Guidance

• Tier 1: Primary Screening

- Q1: VOCs present?
- Q2: Near buildings?
- Q3: Immediate concern?
- Tier 2: Secondary Screening
 - Q4: Generic screening
 - Q5: Semi-site specific screening (alphas from charts & tables)
- Tier 3: Site-Specific Pathway Assessment
 - Q6: Indoor air (and/or subslab)

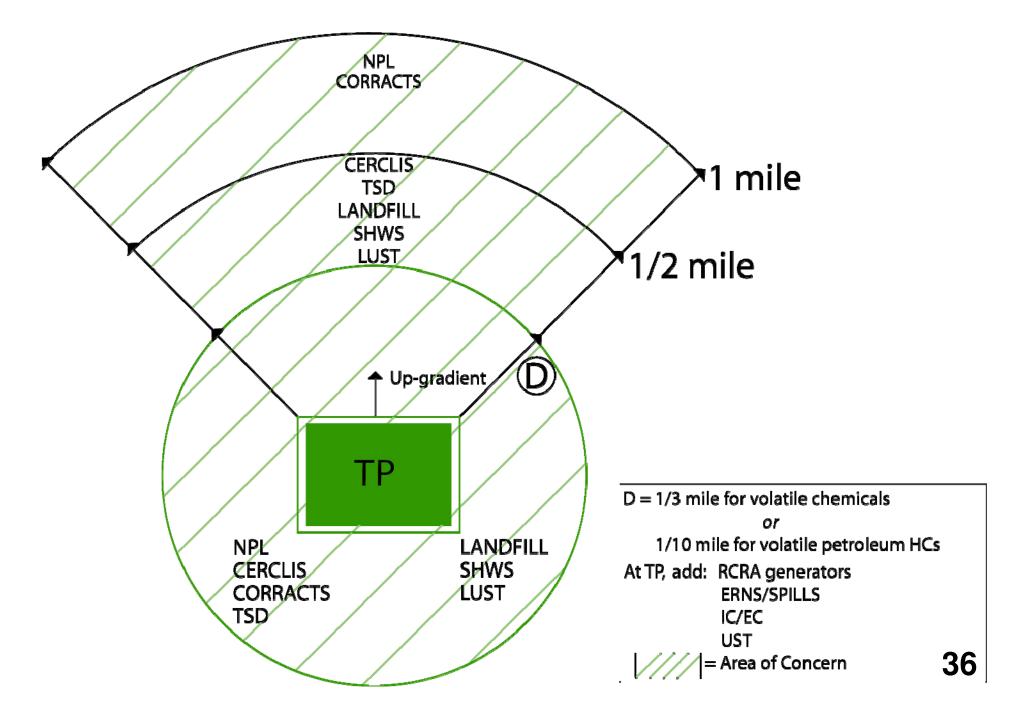
VI Regulatory State Guidance



ITRC VI Guidance

- Practical How-to Guide
- Stepwise Approach
- Discussion of Investigatory Tools
- Thorough Discussion of Mitigation
- Scenarios Document
- Classroom Training in 2008

ITRC VI Scenario Document


- Gas station in residential neighborhood
- Dry-cleaner in strip mall located adjacent to neighborhood
- Large industrial facility with long plume under several hundred buildings
- Vacant lot with proposed Brownfields development over groundwater plume
- Vacant large commercial building with warehouse space and office space
- Apartment building with parking garage over groundwater plume

ASTM VI Standard

- Focus on Property Transactions
- Prescriptive Screening Distances
- No RBSLs (RBC)
- No Assessment Recommendations
- Legal Standards
- Mitigation
- Released March 3, 2008

SEARCH DISTANCE TEST

Part 4 – Methods to Assess VI

- Indoor Air Sampling
- Groundwater Sampling
- Soil Phase Sampling
- Use of Predictive Models
- Measure Flux Directly
- Soil Gas Sampling
- Supplemental Tools/Data

Some Key VI Issues

- Experience of the Collector/Consultant
 - Have they done this before?
 - Do they understand RBTLs?
 - Quality/experience of field staff? Sr or Jr?
- Spatial & Temporal Variability
 - GW, Indoor Air, Soil Gas
- Ultra Low Screening Levels
 - Increases chances for false positives

Ingredients for Effective VI Assessments

- Investigatory Approach
- Determine Correct Screening Levels
- Sample & Analyze Properly
- Know & Use Supplemental Tools
- Demonstrating Bioattenuation

Approach Generalizations

- Indoor Air
 - Always find something
 - Multiple sampling rounds: extra time & \$
- Groundwater Data
 - Typically over-predicts risk
- Soil Phase Data
 - Typically not allowed; over-predicts risk
- Soil Gas Data
 - Transfer rate unknown
 - Sub-slab intrusive

Groundwater Data

- Preexisting Data Often Exist
 - Over proper well screen interval?
 - Coverage typically limited; interpolation
- Gather New Data
 - Well location, construction, sampling
 - Might miss actual contamination zone
- Perched/Clean Water Layer?
- Tier 1 Risk-Based Target Levels Exist

Soil Phase Data

- Soil Data OK to Use in MO
- Tier 1 Target Levels Exist

Soil Gas Measurement

- Pros:
 - Representative of Subsurface Processes
 - Higher Target Levels Than Indoor Air
 - Relatively Inexpensive
 - Can Give Real-time Results
- Cons:
 - Transfer Rate Unknown
 - Sampling Protocols Vary

Currently Most Preferred Approach

Part 4 – Soil Gas Sampling

- Soil Gas Methods
- Sampling & Analysis Issues
- Sampling Strategies
- Bioattenuation of Hydrocarbons
- Other Tools/Approaches

Which Soil Gas Method?

- Active?
- Passive? (qualitative)
- Flux Chambers? (limited use)

Active method most often employed for VI

Passive Soil Gas

- Pros:
 - Easy to Deploy
 - Can Find Contamination Zones
 - Low Permeability soils
- Cons:
 - Does not Give Concentration
 - No Less Expensive

Considered as Screening Tool by MO-DNR

Passive Soil Gas Samplers

Adsorbent inside tube open on one end Adsorbent inside badge

Adsorbent inside vapor permeable, waterproof membrane

Direct Flux Measurement (Flux Chambers)

• Pros:

Direct Measurement of Intrusion

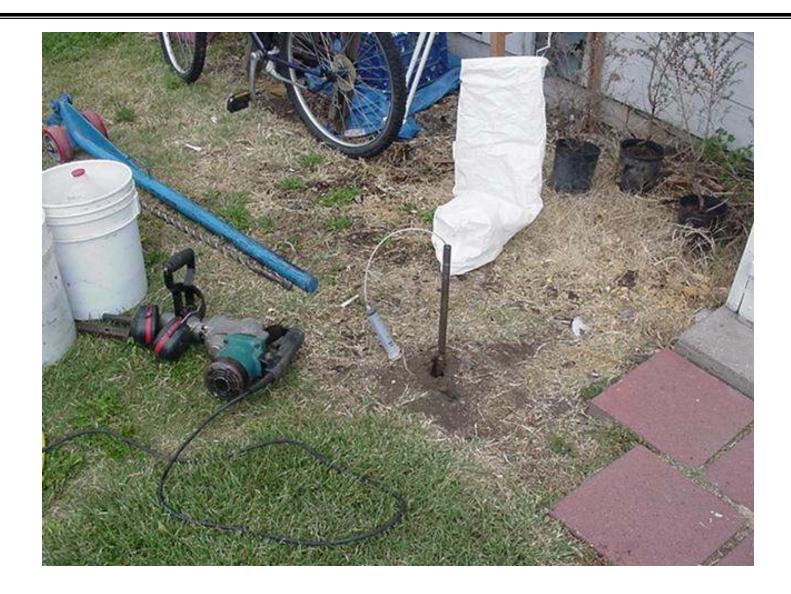
- Cons:
 - Proper Location?
 - Protocols Debated
 - How to Use Data?

MO-DNR: Will Consider Use

Static Flux Chamber

Get Enough Data

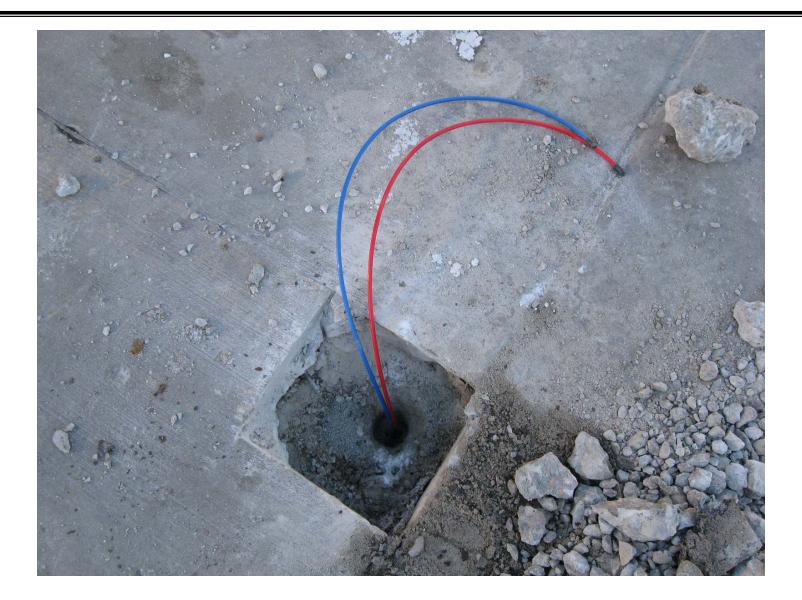
- Soil Gas Not Homogeneous
- Spatial & Vertical Variations Exist
- •
- Don't Chase 1 pt Anomalies
- Get Enough Data Near/Around/Under
- On-site Analysis Enables Real-Time Decisions


Probe Installation Methods

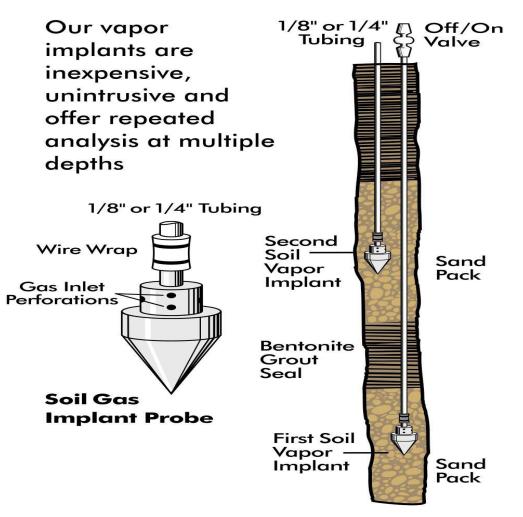
- Driven Rod Methods (Temporary)
 - Hand equipment, direct-push
 - Collect sample while probe in ground
 - MO-DNR wants accurate location
- Vapor Mini-Wells/Implants MO Preferred
 - Inexpensive & easy to install/remove
 - Allow repeated sampling
 - Can "nest" in same bore hole
 - Must construct to remain for at least 6 months

Probe Installation/Abandonment

- Must follow MO Well Construction Rules
- Wells > 10' with riser < 2" or in a Borehole < 6" OD Require Variance from GSRAD


Sampling Through Rod

Soil Gas Implants



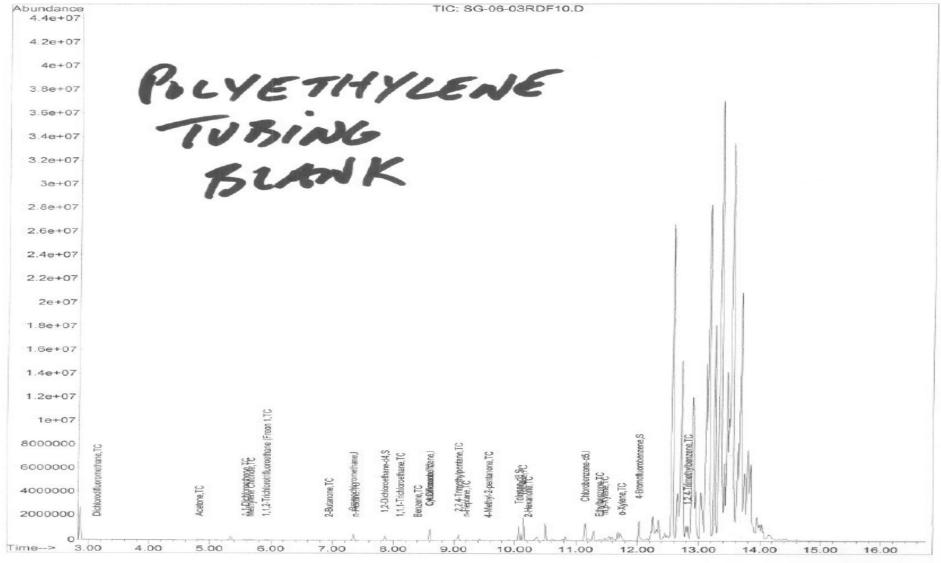
Nylon Tubing

Multi-Depth Nested Well

Soil Vapor Nested Well

Probe Considerations

- Tubing Type
 - Rigid wall tubing ok (nylon, teflon, SS)
 - Flexible tubing not (tygon, hardware store)
 - Small diameter best (1/8" or ¹/₄")
- Probe Tip
 - Beware metal tips (may have cutting oils)
- Equilibration Time
 - 30 minutes for direct push, 48 hrs rotary
 - Effects of air knife?
- Equipment Blanks
 - Need to collect blank through collection system


Tubing Test

Tubing	TCE #1	TCE #2	Average
	(ug/m3)	(ug/m3)	
SS	470	350	410
PEEK	460	340	400
Nylaflow	400	390	395
Teflon	380	410	395
Polyethylene	310	310	310
Cu	nd	170	?

MO-DNR currently allows PolyEthy & Cu

Data Path : D:\111406.12p\ Data File : SG-06-03RDF10.D Acg On : 14 Nov 2006 6:05 pm Operator : cb Sample --Misc 10 -ALS Vial 11 Sample Multiplier: 1 -

Quant Time: Nov 15 08:59:47 2006 Quant Method : C:\MSDCHEM\1\METHODS\102406TOUGM3.M Quant Title : TO-15 Full Scan Mode QLast Update : Fri Oct 27 07:30:49 2006 Response via : Initial Calibration

Soil Gas Sampling Issues

- Sample Size
 - Smaller volumes faster & easier to collect
 - MO prefers 1 liter or less
- Containers
 - Canisters: More blank potential. Higher cost
 - Tedlars: Easier to collect
- Flow Rate
 - MO prefers < 200 ml/min</p>
- Applied Vacuum
 - MO requires < 100 inches of water
 - Must flag data if > 100 inches of water

Soil Gas Sampling Issues

- Rain
 - Generally wait 48 hours after rain event
 - Depends upon depth & surface cover
- Tracer Compound/Leak Test
 - Test sample train with vacuum test
 - Liquids (IPA, pentane, freon)
 - Gases (He, CO2)

Sample Volumes

Use of Tedlar Bags

Advantages offered by Tedlars:

- Many Consultants More Familiar With than Swageloks
- Easy to Fill: Perhaustalic Pump, Syringe, Lung Box
- Disposable No Chance of Carry-over/False Positives
- Allows Repeat Analysis of a Sample if in Field
- Allows Measurement of Gaseous Tracer
- Allows On-site & Off-site Analysis of Same Sample!

Liquid Tracer Method

- Pros
 - Fast & easy
 - Can cover multiple spots easy
 - Very conservative (100 ug/L = 0.1% leak)
- Cons
 - Typically qualitative
 - Don't know results in real-time without lab
 - Small leak can raise DLs of VOC analysis

Gas Tracer Method

- Pros
 - Quantitative
 - Real-time results with portable meters
- Cons
 - More complicated and slower. Increases costs
 - Harder to cover multiple locations, esp with DP

Best Method if No Lab On-site

Liquid Method

Post-Run Tubing (PRT) Fitting

Gas Method

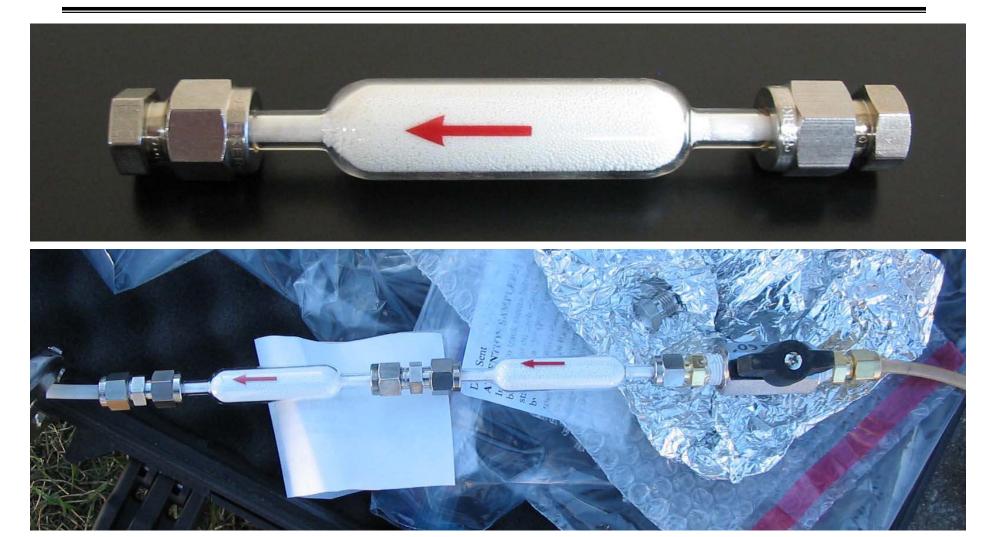
Tent Shroud

Sampling in Shroud

Purging with Syringe

Sample Collection

Sample Transfer


Beware of the Hardware

Sample Collection

SVOC Sampling

Some Final Sampling Issues

- Certified Clean Canisters

 Not needed if DL > 5 ug/m3
- Residual Vacuum in Canisters
 Not critical for soil gas samples
- Dedicated Flow Restrictors

 Not necessary if cleaned between samples

Common Soil Gas Analyses

- VOCs
 - Soil & Water Methods: 8021, 8260
 - Air Methods: TO-14, TO-15, TO-17
- Hydrocarbons – 8015 m, TO-3
- Oxygen, Carbon Dioxide
 ASTM 1945-96
- SVOCs: TO-4, TO-10, TO-13

Soil Gas Analysis Issues (TO-14/15 or 8260 or 8021)

- All Methods Give Reliable Results
- Detection Level Discriminator:
 - TO Methods: <1 to 1 ug/m^3
 - 8021: 2-5 ug/m³
 - 8260: 10-100 ug/m³
- On-Site Analysis:
 - Extremely Helpful for VI
 - Minimizes False Positives

High SG Concentrations Create Headaches

- Typical Soil Gas Concentrations
 - Benzene near gasoline soil: >100,000 ug/m3
 - TPH vapor: >1,000,000 ug/m3
 - PCE under dry cleaner: >100,000 ug/m3
- TO-15 Maximum Conc: 2,000 ug/m3
 - Must do large dilutions, DL goes up
 - False positives from hot samples
- Canister & Hardware & Instrument Blanks

New Advance: On-Site TO-15 Scan/SIM

- Simultaneous Scan/SIM mode enables
 <10 ug/m3 for All VOCs &
 ~2 ug/m3 for subset of compounds.
- Only 2cc of Sample. Eliminates Hardware
- Real-time Analysis in Structures: Control!

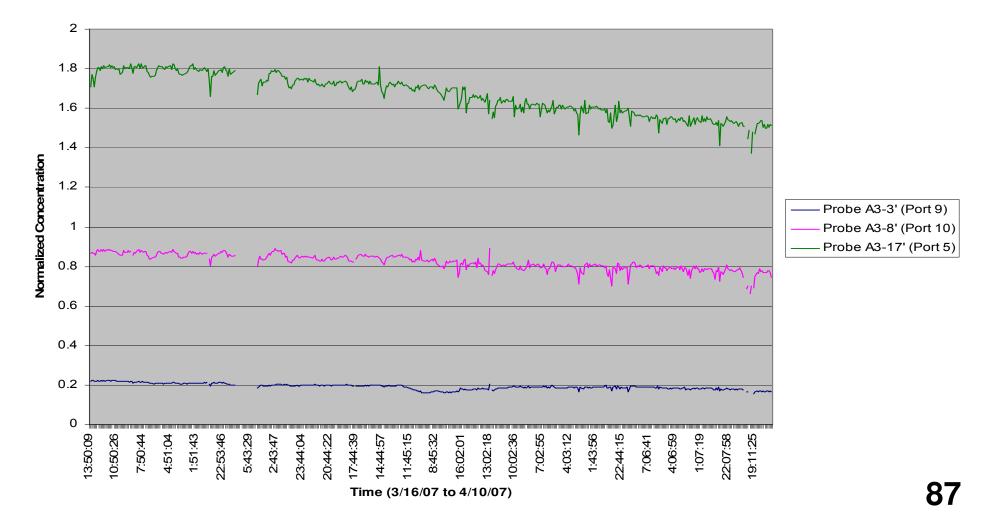
Part 5: Soil Gas Sampling Strategies

- Where to Collect Samples
- Exterior vs. Interior (sub-slab)
- How Often to Sample
- Documenting Bioattenuation

Where to Sample - Vertically

- Generally Two Depths per Location
 - One of the two <3' below foundation
 - Basements: Within 5' of wall at mid-depth
 - Slabs: Within 3' of bottom of slab
 - Source below: collect below foundation
- Future Buildings
 - Two depths, nominally 3' & 10' bgs
 - Just below future foundation if contamination shallow
- Shallow GW
 - Above cap fringe
 - Just below future foundation if contamination shallow

Where to Sample - Laterally


- Source Not Immediately Below
 - Collect on side towards source
 - Approx 25' spacing
- Future Structures
 - In areas with highest contamination
 - Minimum of 4 samples; ~50' max spacing
 - Preferably within footprint of future bldg.

How Deep to Sample?

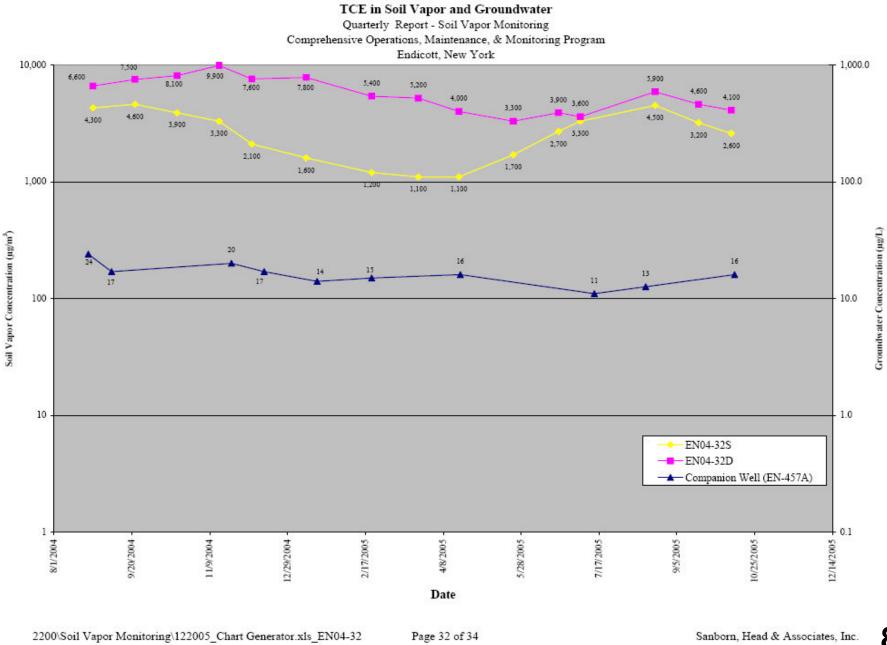
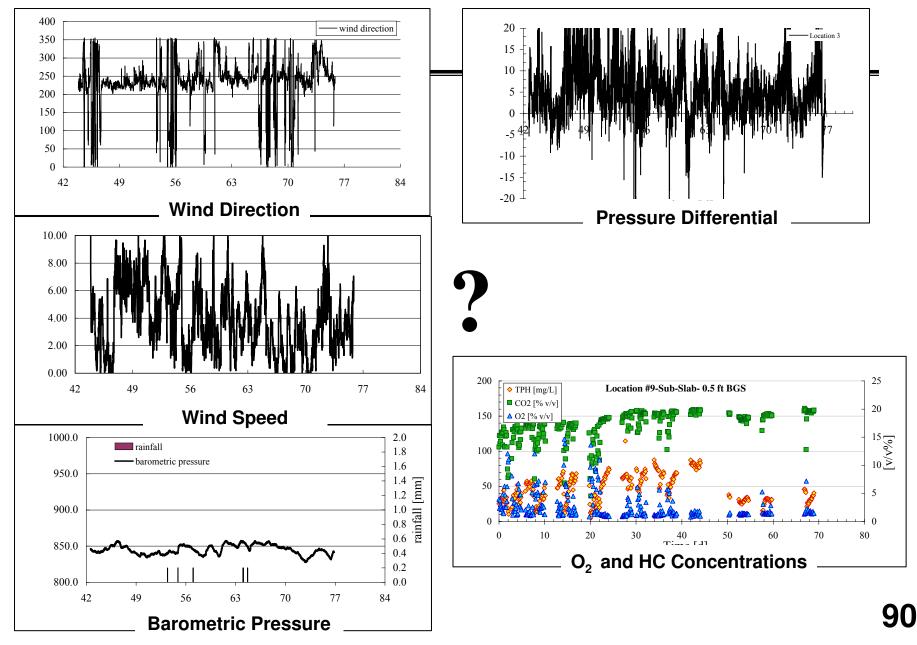
- Depth Below Surface
 - 3' to 5' bgs generally considered stable
 - MO allows as shallow as 18"
 - Temporal Studies Ongoing

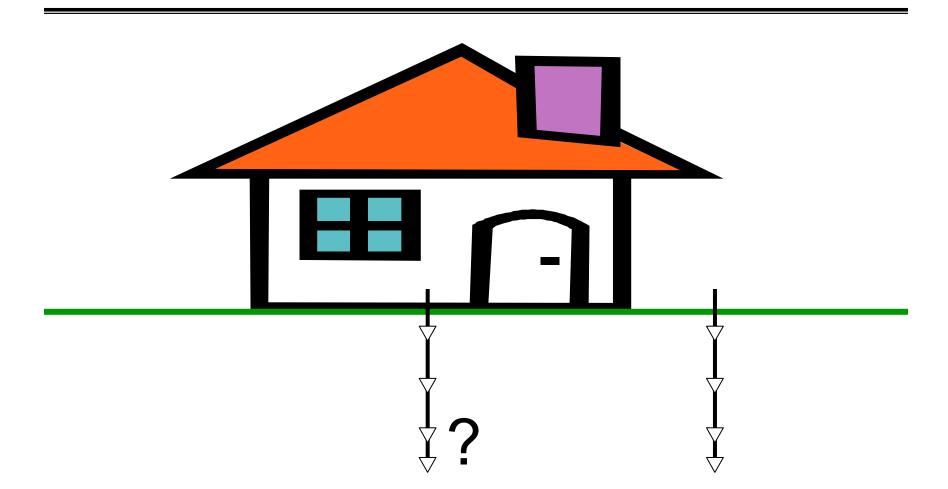
Soil Gas Temporal Study

Probe A3 (TCE - Normalized)

How Often to Sample?

- MO Requires Minimum of Two Events
 - No less than 3 months between events
 - More events if data variable
 - 4 events nominal, but more if necessary

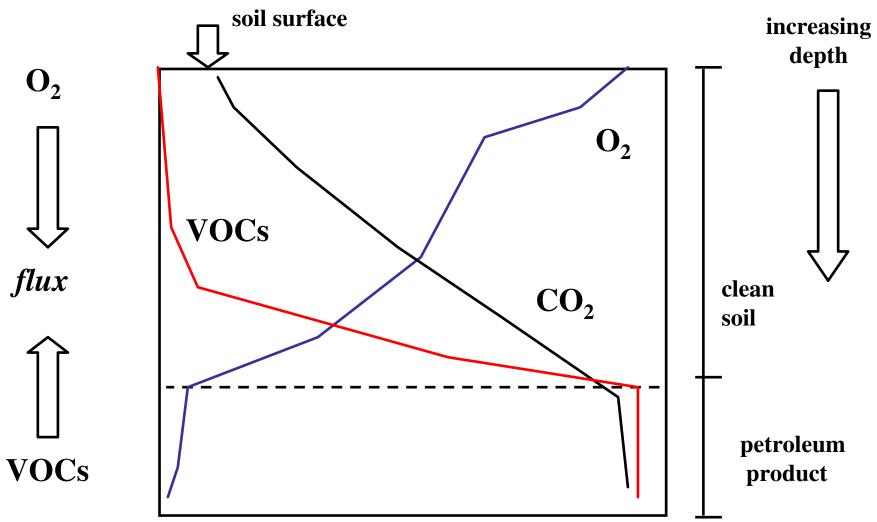




Figure B.32

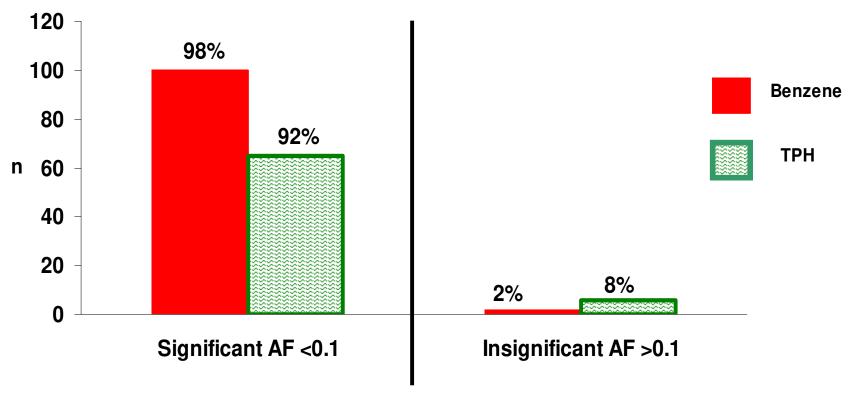
88

Meteorological Effects on Soil Gas

Sub-Slab vs. Near-Slab Samples

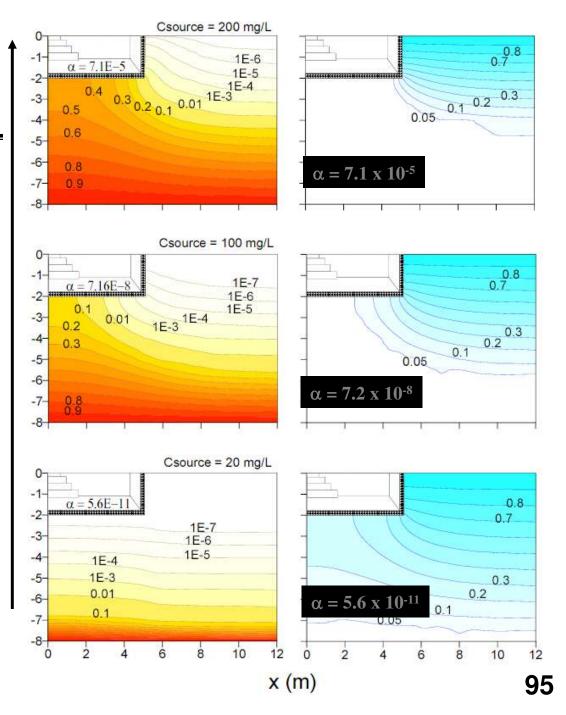

Sub-Slab vs. Near-Slab


- MO-DNR Does Not Require
- Very Intrusive; Legal Complications
- HCs: If O₂ High, Near-slab OK
- May Have More Bioattenuation


Bioattenuation of HCs

- Existing Data Suggest O₂ Effective Barrier
- Attenuation > 10,000 Times Over Default
- Document By Vertical Profiles of COC & O₂
- Recent 3-D Modeling Substantiates
- MO-DNR Will Consider Bioattenuation

Theoretical Bio Profile

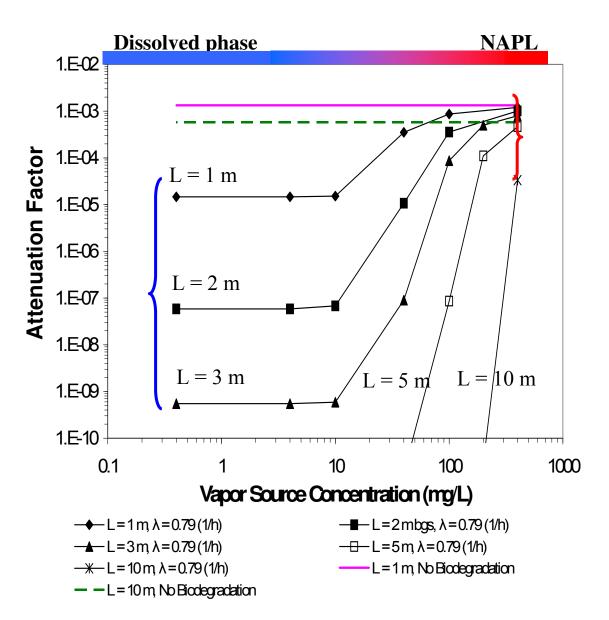

SIGNATURE CHARACTERISTICS OF BIO-ATTENUATION

- 5 feet clean coarse-grained or 2 feet of fine-grained soil overlies contaminant source
- Vapor concentrations decrease significantly vertically away from source
- O2 depleted and CO2 enriched near the source, O2 enriched and CO2 depleted with increasing distance from the source
- O2 minimum range 3% to 5%

Effect of Source Concentration

 $[\lambda = 0.18 h^{-1}]$

Results suggest that there may be source vapor concentrations that are of little concern if soil gas beneath the foundation is welloxygenated (e.g., groundwater plume sources)

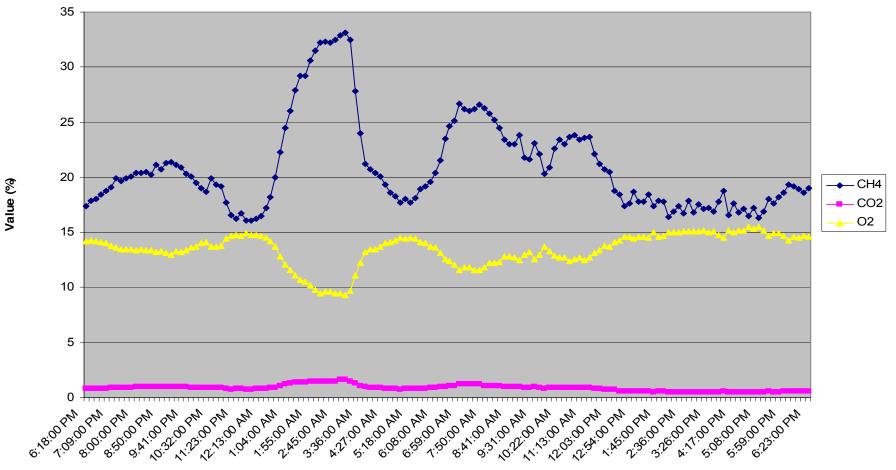

Modeling Assumptions:

- Benzene source
- Sand soil
- Basement scenario $\lambda = 0.79 \text{ h}^{-1}$

Biodegradation is likely to have a significant effect on α for non-NAPL sources

For NAPL sources, effect of biodegradation on α may be minimal due to oxygen depletion

L: source-foundation distance



Supplemental Tools/Data

- Site Specific Alpha Using Radon
 Factor of 10 to 100. \$100/sample
- Indoor Air Ventilation Rate
 - Factor of 2 to 10. <\$1,000 per determination.
- Soil Physical Properties
 - Moisture content the key parameter
- Real-Time, Continuous Analyzers
 - Can sort out noise/scatter

Continuous Monitoring Data

HUNTINGTON BEACH SITE - SOIL GAS

99

VI Documents

- MO-DNR Soil Gas & MRBCA Guidance
 - http://www.dnr.mo.gov/env/hwp/tanks/mrbcapet/mrbca-pet-tanks.htm
- Overview of SV Methods (www.handpmg.com)
 - LustLine Part 1 Active Soil Gas Method, 2002
 - LustLine Part 2 Flux Chamber Method, 2003
 - LustLine Part 3 FAQs October, 2004
 - LustLine Part 4 Soil Gas Updates, Sept 2006

Existing Documents & Training

- Soil Gas Sampling SOPs
 - Soil Gas Sampling, Sub-slab Sampling, Vapor Monitoring Wells/Implants, Flux Chambers (www.handpmg.com)
 - EPA-ORD Sub-slab SOP–Draft, Dr. Dom DiGuilio (www.iavi.rti.org/resources)
- Other
 - API Soil Gas Document (www.api.org/bulletins)
 - Robin Davis Lustline Article on Bioattenuation (Lustline June 2006, www.neiwpcc.org)

VI Websites & Links

- http://www.dnr.mo.gov/env/hwp/tanks/mrb ca-pet/mrbca-pet-tanks.htm
- www.handpmg.com
 - Soil gas information
 - Units converter
 - Articles & presentations
- www.itrcweb.org
- www.api.org

Independent Consultant, Vapor Intrusion H&P Mobile Geochemistry Carlsbad, CA 92010 (760) 804-9678 www.handpmg.com

